In the world of Big Data, there are numerous job profiles available, such as Data Engineers, Data Analysts, Data Scientists, Business Analysts, and so on. Beginners need clarification on these profiles, as Data Scientist is the most popular and sought-after. They require assistance in determining whether Data Science is a good fit and identifying the best resources. There are several misconceptions about data science myths. As a data scientist, there are several data science myths to ignore for a successful career.
Transitioning into data science is difficult, not because you need to learn math, statistics, or programming. You must do so, but you must also combat the myths you hear from others and carve your path through them! In this article let us see the top 10 data science myths that you should ignore in 2023.
Myth 1 – Data Scientists Need to Be Pro-Coders
Your job as a Data Scientist would be to work extensively with data. Pro-coding entails working on the competitive programming end and having a strong understanding of data structures and algorithms. Excellent problem-solving abilities are required. Languages like Python and R in Data Science provide strong support for multiple libraries that can be used to solve complex data-related problems.
Myth 2 – Ph.D. or Master's Degree is Necessary
This statement is only partly correct. It will be determined by the job role. A Master's or Ph.D. is required if you want to work in research or as an applied scientist. However, if you want to solve complex data mysteries using Deep Learning/Machine Learning, you will need to use Data Science elements such as libraries and data analysis approaches. If you do not have a technical background, you can still enter the Data Science domain if you have the necessary skill sets.
Myth 3- All Data Roles are the Same
People believe that Data Analysts, Data Engineers, and Data Scientists all perform the same function. Their responsibilities, however, are completely different. The confusion arises because all of these roles fall under the Big Data umbrella. A Data Engineer's role is to work on core parts of engineering and build scalable pipelines of data so that raw data from multiple sources can be pulled, transformed, and dumped into downstream systems.
Myth 4 – Data Science Is Only for Graduates of Technology
This is one of the most crucial myths. Many people in the Data Science domain come from non-tech backgrounds. Few people are transitioning from computer science to data science. Companies hire for data science and related positions, and many of those hired come from non-tech backgrounds with strong problem-solving abilities, aptitude, and understanding of business use cases.
Myth 5 – Data Science Requires a Background in Mathematics
As a Data Scientist, being good at math is essential, as data analysis requires mathematical concepts such as data aggregation, statistics, probability, and so on. However, these are not required to become a Data Scientist. We have some great programming languages in Data Science, such as Python and R, that provide support for libraries that we can use for mathematical computations. So, unless you need to innovate or create an algorithm, you don't need to be a math expert.
Myth 6- Data Science Is All About Predictive Modelling
Data scientists spend 80% of their time cleaning and transforming data, and 20% of their time modeling data. There are numerous steps involved in developing a big data solution. The first step is data transformation. The raw data contains some error-prone values as well as garbage records. We need meaningful transformed data to build an accurate machine-learning model.
Myth 7- Learning Just a Tool Is Enough to Become a Data Scientist
The Data Science profile requires a diverse set of technical and non-technical skills. You must rely on something other than programming or any particular tool that you believe is used in Data Science. We need to interact with stakeholders and work directly with the business to get all of the requirements and understand the data domain as we work on complex data problems.
Myth 8- Companies Aren't Hiring Freshers
This statement made sense a few years ago. However, today's freshmen are self-aware and self-motivated. They are interested in learning more about data science and data engineering and are making efforts to do so. Freshers actively participate in competitions, hackathons, open-source contributions, and building projects, which aid in their acquisition of the necessary skill set for the Data Science profile, allowing companies to hire freshers.
Myth 9 – Data Science competitions will make you an expert
Data Science competitions are ideal for learning the necessary skills, gaining an understanding of the Data Science environment, and developing developer skills. However, competition will not help you become a Data Scientist. It will improve the value of your resume. However, to become an expert, you must work on real-world use cases or production-level applications. It is preferable to obtain internships.
Myth 10 – Transitioning cannot be possible in the Data Science domain
If you have a data-related background, such as a Data Engineer, Business Analyst, or Data Analyst, this transition will be simple for you. Transitioning into a data science profile is possible even if you come from other profiles such as testing or software engineering.
Join our WhatsApp Channel to get the latest news, exclusives and videos on WhatsApp
_____________
Disclaimer: Analytics Insight does not provide financial advice or guidance. Also note that the cryptocurrencies mentioned/listed on the website could potentially be scams, i.e. designed to induce you to invest financial resources that may be lost forever and not be recoverable once investments are made. You are responsible for conducting your own research (DYOR) before making any investments. Read more here.