Data Science

Discovering the Truths behind Common Data Science Job Myths

Satavisa Pati

Breaking down the data science job myths for you.

A data scientist develops, maintains, and evaluates AI solutions. He or she is also involved in the design of data solutions using Artificial Intelligence-based technologies like H2O, Tensorflow. This job skills in designing algorithms, implementing pipelines, validating model performance, and developing interfaces such as APIs. There are several myths around the job of data science and here we will break it down for you.

Data Scientist is Just a Fancy Name for a Business Analyst

The data scientist job description is fundamentally different from that of a business analyst. The role of a business analyst is to act as a bridge between business and IT. They typically gather functional and non-functional requirements, build use cases, communicate with stakeholders, and manage project delivery. A data scientist, on the other hand, processes data to spot trends, glean insights and build predictive models. The below Venn diagram will help you paint a clear picture.

Data Scientist, Data Analyst, Data Engineer are all the Same

The exact role of a data scientist is still fluid, naturally, as the field is still evolving. For example, if the organization you work for is a small one, one person might do data cleaning, transformation, analytics, model building, etc. But if you're working for a large team of data scientists, you might specialize in any one of these areas. In general:

  • A data scientist is concerned with collecting, analyzing, interpreting, and visualizing large sets of data. They build hypotheses, test them, and learn from the data. 
  • A data analyst performs a subset of these tasks — like analyzing data and visualizing them. However, a data analyst might not write code or build predictive models. 
  • A data engineer works on designing and developing information systems.

Data Science is all About Tools

Like every other job, a data scientist also uses tools to get the work done. Their armor will have sophisticated data mining, transformation, visualization, and deployment tools, in addition to various development environments. But knowing to use these tools can only take you so far. Fundamentally, the role of a data scientist is to solve business problems using data. So, to be a good data scientist, you need to have skills in problem-solving, communication, and logical thinking, as well as other data preparation, exploration, evaluation metrics, and transformation. 

Data Scientists don't Code

The proof that this is one of the biggest myths of all is in every data scientist job description available today. Because, if you are a data scientist, you are responsible for taking your ideas to production. So, you need the programming skills to write production-ready code. The most common languages used are Python and R, but companies are known to use Java, SQL, Scala, and others too.

Coding Background is a must-have for Data Scientist Jobs

It might be surprising that some people think data scientists don't code, while others think coding is a must-have. But it happens. So, let's clear this up too. Data scientists come from a variety of backgrounds — mathematicians, statisticians, engineers, as well as programmers. But we need to differentiate 'skill' from 'background'. It goes without saying that data scientists need programming skills, but not necessarily several years of coding experience. If you're not a programmer, you can learn to code quickly and improve steadily. Here is a simple guide on how to become a programmer.

Data Science is all About Predicting the Future

Predictive modeling is a part of data science, yes. But it is not the only part. In fact, it occupies a very small space in the world of data science. Today, techniques and technologies of data science are being used in a wide range of fields — from multi-language translations, image search, video analysis, to self-driving cars. If you're interested in seeing the data science landscape, which extends from Uber to Delhi Police, read our blog post about real-life data science projects here.

You need to be a Mathematician or Statistician to Become a Data Scientist

This is a complex myth because it's both true and false. Data science uses concepts of mathematics and statistics every single day. Without understanding the basics of probability, linear algebra, and other statistical concepts, you can not become a good data scientist. However, you don't necessarily need to hold a Ph.D. in these fields either. Many entries or mid-level data scientist jobs don't require a formal qualification in these areas. If you have a good foundational understanding and can apply these concepts to practice, you can become a data scientist.

Experienced Professionals can't Transition into Data Science Jobs

Not true. As an emerging field, most senior data scientists you meet will have done some other kind of work before this. Whether you're an experienced career professional with 20+ years under your belt or a beginner with less than 5 years, you can make a smooth transition into data science jobs.

Join our WhatsApp Channel to get the latest news, exclusives and videos on WhatsApp

                                                                                                       _____________                                             

Disclaimer: Analytics Insight does not provide financial advice or guidance. Also note that the cryptocurrencies mentioned/listed on the website could potentially be scams, i.e. designed to induce you to invest financial resources that may be lost forever and not be recoverable once investments are made. You are responsible for conducting your own research (DYOR) before making any investments. Read more here.

Solana and Litecoin Whales Are Quietly Accumulating This Crypto Predicted To 50x In 2025

Penny Cryptos To Buy in 2024's Bull Run: Tron, Cronos and Newcomer Lunex

SOL Reaches New ATH, What’s Next? WIF and LNEX Reveal Price Targets

ALGO Surges with Blockchain Adoption; The Graph (GRT) Wakes Up as Lunex Sparks Bull Run

Crypto Bull Season is Here: Avalanche Targets $40, Cardano Rallies Towards $1 As Lunex Network Sets for 18x Price Pump